

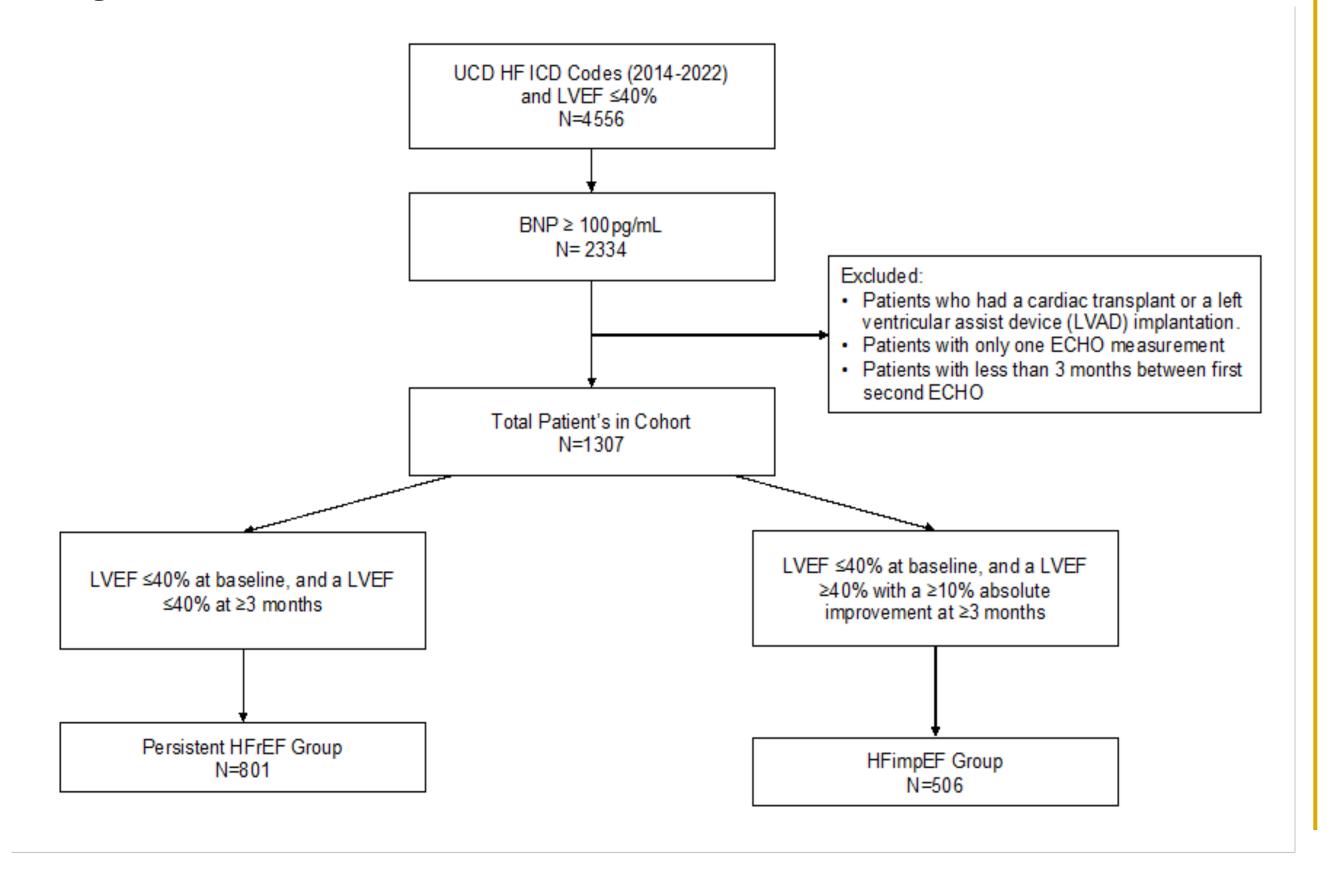
SCHOOL OF MEDICINE

Temporal Trends and Patterns in Heart Failure with Improved Left Ventricular Ejection Fraction: A Retrospective Cohort Study

Alexander Baltodano, B.A., Erick S. Romero, M.D., Paulo Rocha, M.S., Imo Ebong M.D., M.S., Michael Gibson M.D., Shirin Jimenez M.D., David Liem, M.D., Ph.D., Julie Bidwell RN, Ph.D., Martin Cadeiras, M.D. Department of Internal Medicine, Division of Cardiovascular Medicine - UC Davis School of Medicine - Betty Irene Moore School Of Nursing

Background

Heart failure (HF) with reduced ejection fraction (HFrEF) remains a leading cause of morbidity and mortality. Heart failure with improved ejection fraction (HFimpEF) has better prognosis and outcomes. However, improvement only occurs in a subpopulation of HFrEF.


Hypothesis

We hypothesize that by further characterizing the time dependent trajectory of HFrEF and HFrecEF patients, we will be able to discern which parameters are most indicative and predictive of electrical and structural reverse remodeling.

Methods

- This was a single center retrospective cohort study. HFrEF
 patients were identified from electronic medical records
 following consensus criterion.
- Patients between January 2014 to January 2022 were identified on electronic medical records.
- Baseline characteristics and longitudinal laboratory, echocardiographic, electrocardiographic, and medication data were obtained.
- We stratified our HF cohort into two groups, HFimpEF group and persistent HFrEF group.
- Longitudinal variables were analyzed using linear mixed models to estimate intercept and slopes.
- Univariate and multivariate Cox regression was used to assess the association between baseline characteristics, slopes, intercepts, and mortality.

Figure 1. Cohort Curation

Results

Table 1. Baseline Characteristics

Characteristics		Median (IQR) or %				
	All (N=1307)	Persistent HFrEF (N=801)	HFimpEF (N=506)	<i>P</i> - Value⁵	n	Nmiss
Age, years	65 (55-75)	63 (54-74)	66 (58-76)	0.0006	1307	0
Sex				<.0001	1307	0
Female	420 (32.1)	219 (27.34)	201 (39.72)			
Male	887 (67.9)	582 (72.66)	305 (60.28)			
Race				0.1385	1307	0
White	742 (56.8)	439 (54.81)	303 (59.88)			
Black	229 (17.5)	155 (19.35)	74 (14.62)			
Asian	86 (6.6)	49 (6.12)	37 (7.31)			
Hispanic	7 (0.5)	3 (0.37)	4 (0.79)			
Native American/Hawaiian	41 (3.1)	25 (3.12)	16 (3.16)			
Other	193 (14.8)	126 (15.73)	67 (13.24)	+		
Unavailable	9 (0.7)	4 (0.5)	5 (0.99)	+		
Ethnicity		(616)	(0.00)	0.9102	1307	0
Hispanic	173 (13.2)	108 (13.48)	65 (12.85)		1307	
Non-Hispanic	1128 (86.3)	689 (86.02)	439 (86.76)			
Unavailable	6 (0.5)	4 (0.5)	2 (0.4)			
Heart rate, b.p.m.	88 (75-102)	86 (73-100)	90 (77-105)	0.0005	1306	1
Blood pressure, mm Hg		35 (15 155)	30 (1.1.30)	0.0000	1300	
Systolic	127 (112-143)	127 (112-142)	127 (112-145)	0.8853	1307	0
Diastolic	77 (67-90)	76 (67-90)	78 (67-90)	0.3453	1307	0
MAP	94.3 (82.7-106.7)	93.7 (82.7-106)	95.3 (83.3-107)	0.3945		0
Weight, Kg	83.5 (71.2-101.1)	83.1 (70.6-98.7)	84.1 (72.4-103.5)	0.1043	1307	-
Body mass index	28.2 (24.5-32.9)	27.9 (24.2-32.2)	28.7 (24.9-33.7)	0.0238	1306	125
Medical History	20.2 (24.0-02.0)	21.0 (24.2-02.2)	20.7 (24.0-00.7)	0.0230	1172	135
Hypertension	967 (74.7)	575 (72.42)	392 (78.24)	0.0189	1295	12
Diabetes	, ,	<u> </u>	221 (44.11)	0.8851		
	568 (43.9) 574 (44.3)	347 (43.7) 330 (41.56)	244 (48.7)	0.0031		
Hyperlipidemia Coronany arteny disease	478 (36.9)	318 (40.05)	160 (31.94)	0.0118		
Coronary artery disease	` '	` '	` '	<.0001		
Atrial fibrillation	436 (33.7)	231 (29.09)	205 (40.92)			
Chronic kidney disease Laboratory	340 (26.3)	210 (26.45)	130 (25.95)	0.8421		
BNP, pg/mL	623 (265-1330)	750 (323-1521)	451.5 (209-926)	<.0001	1307	0
NT-proBNP, pg/mL	1110 (326-2914)	1242 (431-3339)	874 (218-2852)	0.2144	148	1159
Sodium, mEq/L	138 (135-139)	138 (135-139)	138 (136-140)	0.0671	1306	1
Potassium, mEq/L	4 (3.7-4.4)	4 (3.7-4.4)	4 (3.7-4.4)	0.8134	1306	1
Creatinine, mg/dL	1.2 (0.9-1.5)	1.2 (0.9-1.5)	1.2 (0.9-1.5)	0.9515	1306	1
eGFR, mL/min/1.73 m2	56 (46-60)	57 (47-61)	55 (45-60)	0.0477	1232	75
Echocardiogram		, ,	, ,		1202	70
LVEF %	30 (25-40)	30 (20-35)	35 (30-40)	<.0001	1307	0
IVSD	1.2 (1-1.3)	1.2 (1-1.3)	1.2 (1.1-1.4)	<.0001	1307	0
LVIDd	5.6 (5.1-6.2)	5.8 (5.3-6.4)	5.4 (4.9-5.8)	<.0001	1306	1
LVIDs	4.7 (4.1-5.4)	4.9 (4.3-5.6)	4.4 (3.8-4.9)	<.0001	1305	2
PASP	41 (30.5-50)	41.5 (31.2-50.4)	40 (29.7-49.7)	0.2926	1240	67
PW	1.2 (1-1.3)	1.1 (1-1.3)	1.2 (1-1.3)	<.0001	1307	0
TAPSE	1.8 (1.4-2.1)	1.8 (1.4-2.1)	1.8 (1.4-2.1)	0.8179	1283	24
Electrocardiogram	(2)	(2)	(2)	3.5770	1203	24
QTc, ms	498 (472-528)	499 (474-528)	495.5 (470-527)	0.1605	1207	20
Q 1 0, 1113	730 (772-320)	755 (777-520)	755.5 (476-527)	0.1000	1287	20

Figure 3. Multivariable Cox Regression Analysis

Heart Failure with Improved EF (HFimpEF) Outcome

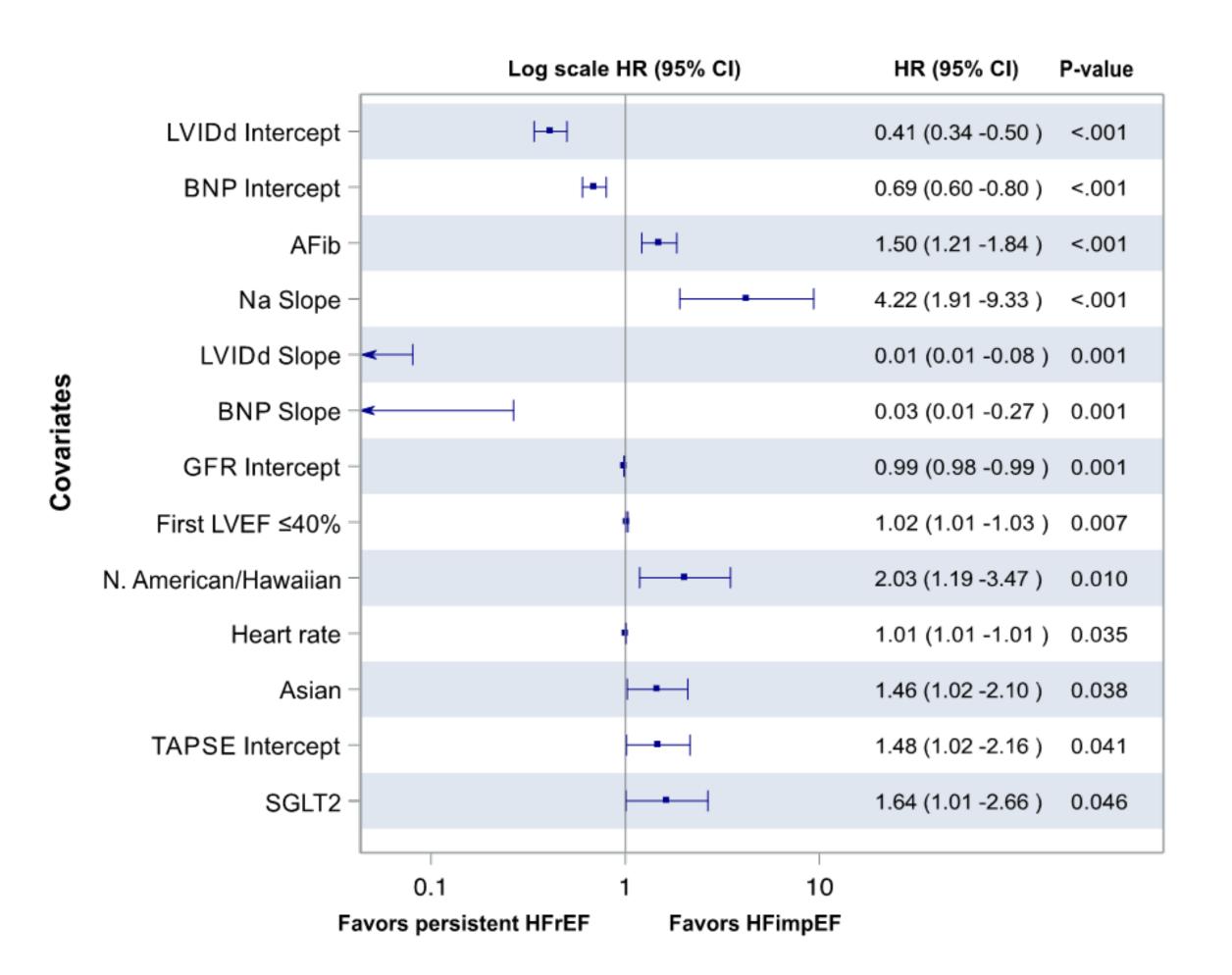
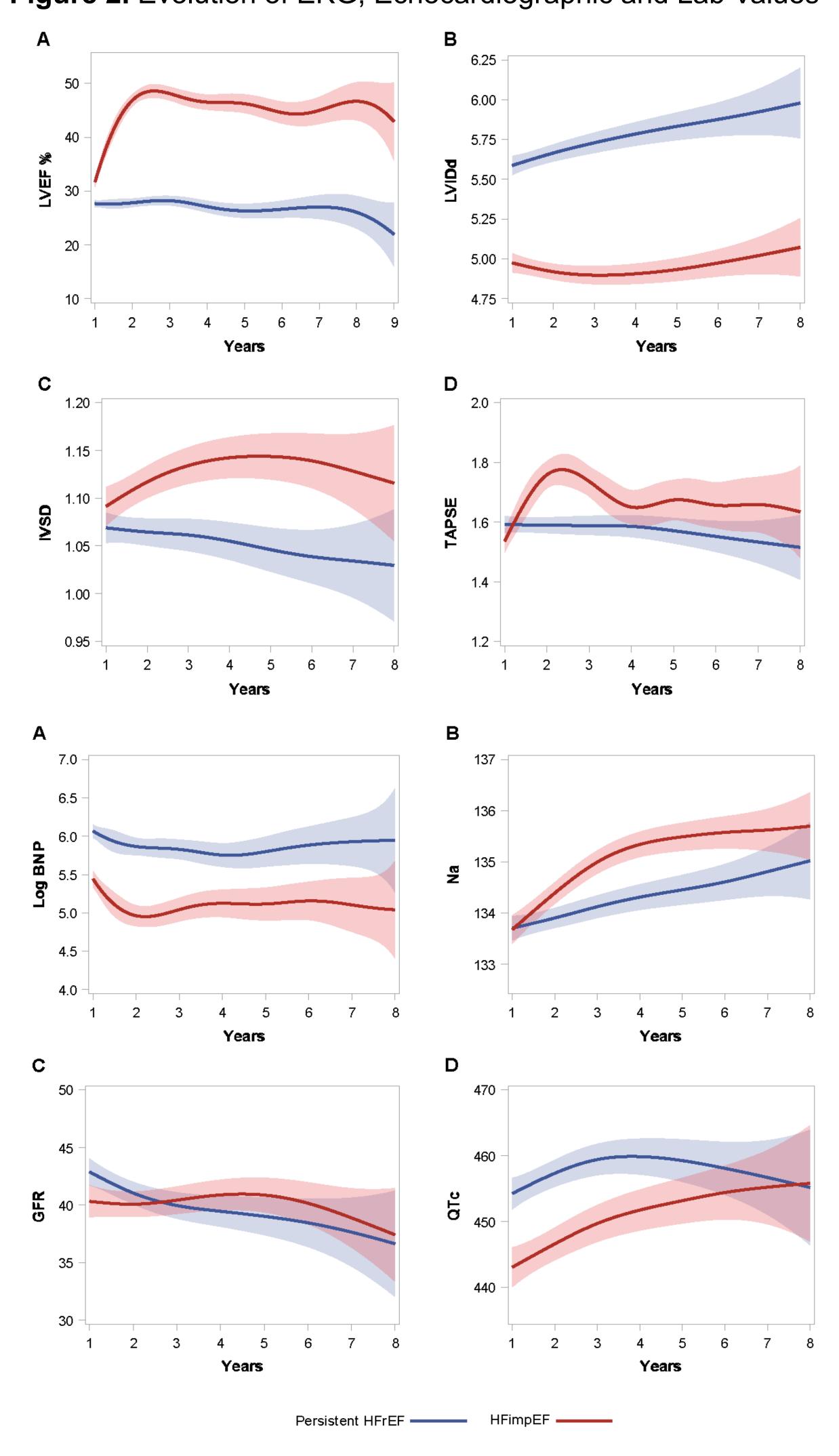
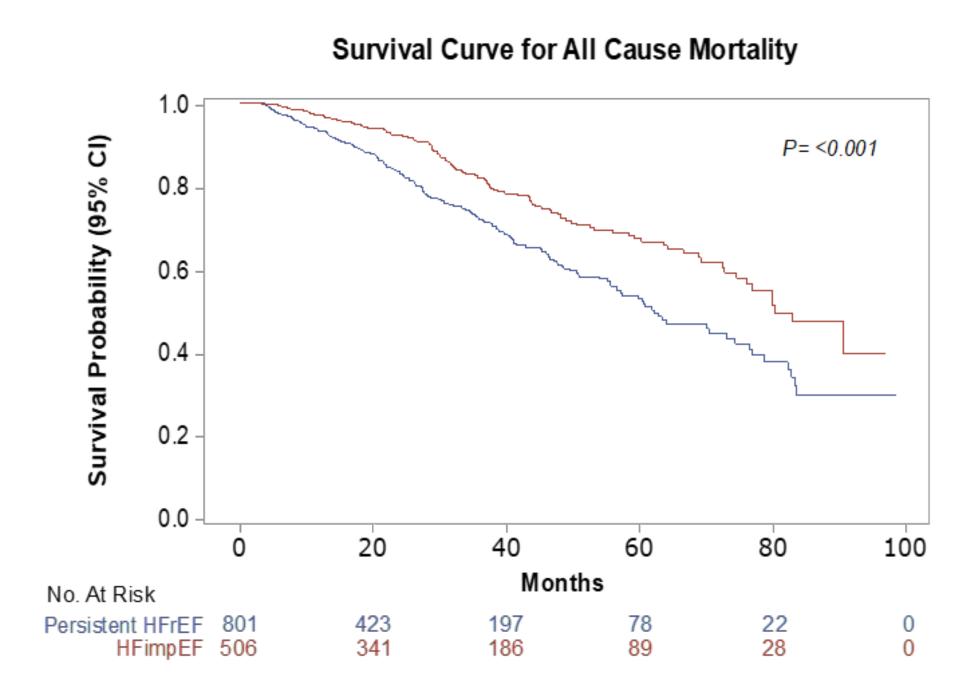



Figure 2. Evolution of EKG, Echocardiographic and Lab Values

Figure 2. Longitudinal echocardiographic, electrocardiographic and lab parameters. X axis represents time in years. Y axis represents parameter of interest. Abbreviations: IVSd, Interventricular septum thickness at end-diastole; LVEDD, left ventricle end diastolic diameter; LVEF, left ventricular ejection fraction; LVIDd, left ventricular internal dimension at end -diastole; LVIDs, left ventricular internal dimension at end -systole; PASP, pulmonary artery systolic pressure; TAPSE, tricuspid Annular Plane Systolic Excursion; BNP, B-type natriuretic peptide; eGFR, estimated glomerular filtration rate; QTc, QT corrected for heart rate.

Figure 3. Forest plot summarizing results from the Multivariable Cox regression analysis for the primary HFimpEF endpoint. *Note: This table only includes the covariates reaching P-value <0.05*


Analysis

- In the HFimpEF group, LVEF changes over time showed that there was a noticeable improvement within the first year and that the LVEF remained above 40% from year 1 to 8. It also showed a persistent decline in LVEF and a level below 40% threshold from years 1 through 8 in the persistent HFrEF group.
- In the HFimpEF group, it was noted that there was an increasing trend in IVSD, PW, LVEF and TAPSE and decreasing trends in LVIDd, LVIDs, and PAS. Furthermore, the HFimpEF group had shorter QTC duration, lower sodium, and serum BNP values over time compared to the persistent HFrEF group.
- Parameters significantly associated with HFimEF (p=<.05)
 were atrial fibrillation, sodium slope, first LVEF ≤40%, Native
 American/Hawaiian, heart rate, TAPSE intercept, and SGLT2
 use.
- Parameters associated with persistent HFrEF were LVIDd intercept & slope, BNP intercept & slope, and GFR intercept.
 Significant covariates parameters remained with a p-values
 <.05 after a sensitive analysis.

Conclusion

The longitudinal echocardiographic changes suggest that HFimpEF patients have undergone structural reverse remodeling. HFimpEF patients had significantly improved overall mortality.

Figure 4. Survival Analysis

Figure 4. Longitudinal analysis of overall mortality among HFrEF and HFrecEF patient. X axis represents time in years. Y axis represents survival probability.

Acknowledgment

References

NIH Grant Number U01 HL160274

Minnie & Selig Rummelsburg Research Fellowship

1. Bozkurt B,
Report of the

1. Bozkurt B, Coats et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021 Mar 1:S1071-9164(21)00050-6. doi: 10.1016/j.cardfail.2021.01.022. Epub ahead of print. PMID: 33663906.